

The global fund for education in emergencies

CHIMIE 4ème SC

FICHE No 30

2 Règle de KLECHKOWSKI : disposition

Appui à l'éducation des enfants réfugiés en crise de Covid-19 dans les provinces du Nord-Ubangi, Bas-Uélé et Haute-Uélé

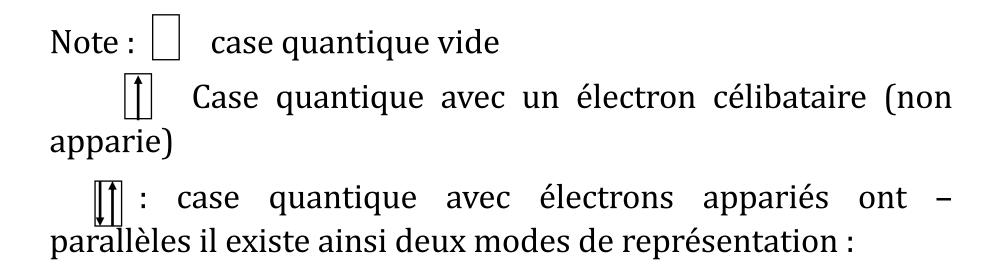
OBJECTIF OPÉRATIONNEL

Au terme de cette leçon chaque élève de la 6e M et G ayant bien suivi notre enseignant sera capable de représenter la structure électronique selon la régle de Klechkouski et de Hund.

2 Règle de KLECHKOWSKI : disposition Disposition des sous-couches

D'énergie d'un électron augmente de la couche K aux couches L,M,N.... pour une couche donnée, elle augmente en passant de la sous-couches aux sous –couches p,d,f,....

Selon cette règle, le remplissage des couches se fait dans l'ordre simple des chassés – croisés suivant n :



REGLE DE HUND

« De remplissage des cases quantiques ou arbitrales d'une sous – couche on formation s'effectue de telle sorte qu'on ait le maximum de spins parallèles dans cette sous-couches ».

REGLE DE HUND

 $1 s^2 2 s^2 2 p^4 \cong 1 s^2 2 s^2 2 p x^2 2 p y 1 2 p z^1$

a)1^{er} mode

 $H(Z=1):10^1$

He (Z = 2): 10^2

Li (Z = 3): 1 s²2s¹ ou (He)2s¹

Be (Z=4): $1s^2 2s^2$ ou $(He) 2s^2$

B (Z=5) : $1 s^2 2 s^2 2 p^1$ ou (He) $2 s^2 2 p^1$

C (Z=6) 1 s² 2s² p² ou (He) 2s²2p²

N (Z=7) $1 s^2 2s^2$ ou (He) $2 s^2 2p^3$

O (Z=8) $1s^2 2s^2 2p^4$ ou (He) $2 s^2 2 p^4$

 $F(Z=9) 1 s^2 2 s^2 p^5 au (He) 2 s^2 2 p^5$

Ne (Z=10) 1 s^2 2 s^2 p^6 au (He) 2 s^2 2 p^6

Ar ($Z=18:1 s^2 2 s^2 2 p^6 3 s^2 3 p^6 - (Ne) 3 s^2 p^6$

2^{eme} mode

REGLE DE HUND

N.B: Les trois cases quantiques ou arbitrales 2 p correspondent à 2 p x 2 p y 2 p z

EX : pour l'oxygène : sa configuration électronique correspond :

 $1 s^2 2 s^2 2 p^4 \cong 1 s^2 2 s^2 2 p x^2 2 p y^1 2 p z^1$

Et non à une configuration du type 1 s² 2 s² 2 p² x 2 p y²

EVALUATION

- Présenter la structure électronique de l'élément don't Z = 37