

The global fund for education in emergencies

CHIMIE 4ème SC

FICHE No 20

Structure du noyau

Appui à l'éducation des enfants réfugiés en crise de Covid-19 dans les provinces du Nord-Ubangi, Bas-Uélé et Haute-Uélé

OBJECTIF OPÉRATIONNEL

A la fin de la leçon, l'élève qui l'aura suivi devra être capable de définir correctement le nucléide sans se référer à ses notes de cours endéans + 5 min

La chimie nucléaire est la partie de la chimie qui étudie les transformations profondes que subit le noyau atomique.

a. Partie nucléaires ou nucléons

Les nucléons sont des particuliers que l'on trouve dans le noyau atomique. Il s'agit principalement protons et de neutrons. La particule neutre (neutron) a été mise en évidence expérimentalement en 1932 par James chadwick physicien anglais, 1891-1974, prix nobel 1935).

Le noyau atomique est considéré comme une masse compacte dans laquelle se trouvent liés protons et neutrons par une force appelée cohésion nucléaire.

Caractéristiques des nucléons

- 1. Protons
- Masse = $1,6726 \cdot 10^{27}$ Kg ou 1,0073 u.m.a (1836 fois la masse de l'électron).

Charge = $1,602.10^{-19}$ CCC : Coulomb).

- 2. Neutron
- Masse = $1,6748.10^{-27}$ Kg ou 1,0087 u.m.a(équivalente à celle du proton).
- Charge: nulle

Les masses indiquées sont celles des particules libres, non engagées dans le noyau.

b. Nucléide ou nuclide

On appelle nucléide, le noyau d'un atome dont la constitution est bien définie.

Un nucléide est représenté de la manière suivante :

A X : symbole atomique de l'élément.

X Z: nombre atomique. Il indique le nombre de

Z protons à un élément déterminé.

A : Nombre de masse ; Il indique le nombre total de nucléons (protons + neutrons). Le nombre de neutrons N se calcule par relation suivante :

N=A - Z

Car

A = Z + N

EVALUATION

Quel sont les ± points que sous venons d'étudier ? Quels sont les facteurs qui peuvent influencer le potentiel redox ?